
A Comparative Study of ACID and BASE in
Database Transaction Processing

Mr. Keith Machado , Mr. Rohan Kank ,Ms. Jeenal Sonawane ,Mr. Shirshendu Maitra

Abstract - Two disparate database reliability models are the primary issue discussed within this paper: ACID (Atomicity, Consistency,

Isolation, and Durability) and BASE (Basically Available, Soft state, Eventual consistency). In the old, yet still extant, world of vertical scaling, the
concept of ACID, which is proven standard for SQL-centric and other relational databases, has been around for 30+ years and works remarkably
well. In the new world of Data Management, with the rise of social networking, NoSQL, Big Data and other leviathans, popularity of BASE has
increased only recently, over the past 10 years or so. The need for real-time availability constraints of web-based transaction processing, ever
expanding horizontally scaled distributed networks, alongside non-relational data stores gave rise to the requirement of BASE. With Brewer’s
CAP Theorem acting as the referee in the middle forcing tough decisions on each team, they essentially represent two competing groups,
although there are now more crossovers and negotiations between the two models.

Index Terms – BASE,ACID,transaction

1 INTRODUCTION

ACID and NoSQL are not the antagonists they were

once thought to be; NoSQL works well under a BASE

model, but also some of the innovative NoSQL systems

fu lly conform to ACID requirements. Database engineers

have puzzled out how to get non-relational systems to

work within an environment that demands high

availability, scalability, with d iffering levels of recovery

and partition tolerance. BASE is still a leading innovation

that is wedded to the NoSQL model, and the evolution of

both together is harmonious. Bu t that doesn’t mean they
always have to be in partnership; there are several options.

So while the opening anecdote is true in many cases,

organizations that need more d iverse possibilities can move

into the commercial arena and get the specific option tha t

works best for them.
Relational database systems are almost always ACID

complaint because relational indexing is centralized and so

there is no advantage in BASE. An ACID database

functions

like a unit that is fu lly consistent with transactional

updates; while a BASE system functions like independent

units that are eventually consistent, and without

transactional updates. There were no other choices than

relational systems in the past; but the advent of NoSQL

now gives organizations that need a d ifferent model more

choices. They can do ACID or BASE, so the variety is much

greater. It is now possible to provide ACID constraints and

other enterprise features within specific NoSQL systems if

that is what the organization requires to meet its needs.

2 ACID

The primary work with database reliability constraints

began in the 1970s with Jim Grey. He formulated the first

three elements of the acronym – Atomicity, Consistency,

and Durability – in his seminal work “The Transaction
Concept: Virtues and Limitations” that was published in

1981 [1]. The paper looked at transactions in terms of

contract law, whereby each transaction had to conform to

specific “transformations of a system state.” All
transactions had to obey the laws defined within the

contract parameters. According to Grey, each transaction

within a database had to obey protocols, either happened

or d idn’t happen, and could not be changed once
committed . In 1979, Bruce Lindsay et al. expanded on

Grey’s preliminary findings with their paper “Notes on
Distributed Databases.”[2] The paper focused on the
essentials for achieving consistency within d istributed

database management systems, data replication,

authorization and access controls, recovery management,

two-stage commits, and others. The final foundational

element of ACID came in 1983 with the publication of

Andreas Reuter and Theo Härder’s paper “Principles of
Transaction-Oriented Database Recovery.”[3] They added
the principle of Isolation to the d iscussion and officially

coined the acronym ACID; it has persisted for the past 30

years as the indispensable constraint for achieving

reliability within database transactions, and in simple terms

means:

Atomicity: Either the task (or all tasks) within the

transaction are performed or none of them are. This is

the all or none principle. If one element of a transaction fails

the entire transaction fails.

Consistency: The transaction must meet all

protocols or ru les defined by the system at all times.

The transaction does not violate those protocols and the

database must remain in a consistent state at the beginning

and end of a transaction; there are never any half

completed transactions.

Isolation: No transaction has access to any other

transaction that is in an intermediate or unfinished state.

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017
ISSN 2229-5518

116

IJSER © 2017
http://www.ijser.org

IJSER

Thus, each transaction is independent unto itself. This is

required for both performance and consistency of

transactions within a database.

Durability: Once the transaction is complete, it will

persist as complete and cannot be undone[4]; it will su rvive

system failure, power loss and other types of

system breakdowns.

There are of course many facets to those definitions and

within the actual ACID requirement of each particular

database, but overall in the RDBMS world , ACID is

overlord and without ACID reliability is uncertain. The pH

of ACID is low, roughly similar to battery acid (0) or maybe

vinegar (2), the data and its constraints are exceedingly

active. Therefore, at any given microsecond in a database

that uses ACID as its system constraint all the data

(hydrogen atoms) are undergoing constant checks to make

sure they fu lfill those constraints. Such requirements had

worked quite well for many years in the smaller,

horizontally schema-driven, scalable, normalized , relational

world of the Pre-Social Networking bygone age. Such past

tru isms are longer the case; Unstructured Data, non -

relational data structures, Big Data, d istributed computing

systems and eventual consistency are now becoming more

common place; new requirements mean new acronyms and

a new pH.

ACID constraints have provided transaction processing

with a reliable foundation from which to build for decades,

and would have continued were it not for the advent of the

Internet, the growth of d istributed data stores, the

unprecedented increase in data volumes and variability, the

need to document and store unstructured data, and the
subsequent need for more flexibility in terms of scaling,

design, processing, cost, and d isaster recovery. This is not a

claim that ACID requirements are no lon ger essential to

transaction processing, because they are. Web-scale

applications, non-relational data stores, and global

d istribution of data centers required the creation of new

alternatives. Nevertheless, with new evolutions in the

database field , it is now possible to have a fu lly functional

NoSQL database that conforms to strict ACID compliance –

such systems are still within the industry at this time, but

they do now exist for organizations that need such an

evolution.

3 BASE

BASE is a clever acronym, especially when paralleled

with ACID – data professionals are the chemists of the IT

universe. While it is not known for sure who originated the

term, most people give credit to Dr. Eric Brewer for at

minimum popularizing the term. In 2000, his keynote

address at the ACM Symposium titled “Towards Robust
Distributed Systems”7 proved to be the shining moment
when many in the industry nodded their heads and knew,

at least in their guts, that momentous changes were on the

horizon. BASE is essentially the d iametric opposite to

ACID, with the limitations outlined by Brewer falling

across the spectrum. The BASE acronym entails:

 Basically Available – the system guarantees some

level of availability to the data even in regards to

node failures. The data may be stale, but will still

give and accept responses.

 Soft State – the data is in a constant state of flux;

so, while a response maybe given, the freshness

or consistency of the data is not guaranteed to be

the most current.

 Eventual Consistency – the data will eventually

be consistent through all nodes and in all

databases, but not every transaction at every

moment. It will reach some guaranteed state

eventually.

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017
ISSN 2229-5518

117

IJSER © 2017
http://www.ijser.org

IJSER

In Brewer’s address he presented a simple table that

outlined the essential traits of each of the two models:[5]

 ACID BASE

 Strong consistency Difficult evolution

 Isolation (e.g. schema)

 Focus on “commit” Availability first

 Nested transactions Best effort

 Availability? Approximate

 answers OK

 Conservative

 (pessimistic) Aggressive
 (optimistic)

 Difficult evolution Simpler

(e.g. schema)

 Faster

 Easier evolution

He stressed that the entire balance between the two is a

spectrum; database engineers had to choose the specifics

of what they needed and wanted versus what they could

attain when developing their particular application. The

real focus of the opposition between the two competing

models is demonstrated w ith Brewer’s CAP Theorem,
which outlines the three major characteristics of database

transaction processing, and contends that only two of the

characteristics can be met at any given time. The three

central elements of CAP (Consistency, Availability, and

Partition Tolerance) have since been expanded to include

much more detail, along with extensive experimentation

by engineers around the world to verify and quantify the

real-world results of such a theorem.

4 CONSISTENCY - HOW IS THE DATA
PERCEIVED?

ACID constraints provide strong consistency, all the time,

no matter what. Such requirements often have

repercussions, though; especially regarding availability. If

the system must always remain in a consistent state, so all

parties see the same view of the data at the beginning and

end of a transaction, then across thousands of nodes that

data may not always be available. The same repercussion

affects d isaster recovery and the loss of nodes – if one part

of a d istributed database collapses, then strong

consistency would not allow any further updates until the

entire system is realigned. Thus, we come to Eventual

Consistency and a range of other consistency guarantees:
A. Strong (Strict) Consistency – All read operations return

the value from the last finalized write operation. It doesn’t
matter which replica the operation completed the write to;

all replicas must be in the same state for the next

operation to occur on those values.
B. Eventual Consistency – This has the greatest variability

of potential values returned . At any given point readers

will see some written value, but there is no guarantee that

any two readers will see the exact same write. All replicas

will eventually have the latest update; it’s just a matter of
time when that will happen.
C. Monotonic Read Consistency – This is also known as a

session guarantee. Reads are similar to eventual

consistency in that the data could still be stale; bu t

monotonic read consistency guarantees that over time the

client will get a more up -to-date read (or the same read) if

they request a read from the same object.

D. Read Your Own Writes (or Read My Writes) –

guarantees that the client always reads their most recent

writes, but other may not see the same updates. It doesn’t
matter what replica the writes are going to, the client

always sees their most updated one.
E. Causal Consistency – if a client reads one value (a) and

then writes the next value (b), and another client then

reads the value of (b) they will also see the value of (a)

since they are connected to each other. Therefore, any

writes that are causally related must be seen by all

processes in the specific order they were written. [6]
F. There are many other consistency guarantees with

d ifferent names, including (but not limited to) casual+,

sequential, consistent prefix, entry consistency, release

consistency, FIFO consistency, and bounded staleness. Bu t

the main issue is the fact that application programmers

must weigh their options when decid ing on the

consistency requirements of any given transaction. The

other two characteristics of CAP Theorem impose

restrictions on what level of consistency can be

guaranteed .

5 CONCLUSION

The crucial question of ACID versus BASE, the

implementation of relational versus non -relational data

stores, consistency versus availability, all hinges on one

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017
ISSN 2229-5518

118

IJSER © 2017
http://www.ijser.org

IJSER

primary element: success in the marketplace. It doesn’t
matter if an organization’s developers are fawning over the

possible integration of a new NoSQL-based system if it is

an unnecessary or untenable addition to a business that still

only requires a relational platform. Certainly, development

planning for the fu ture must include an IT strategy th at

focuses on growth, flexibility, security, and cost. The

exponential growth of data, and its subsequent collection

and analysis, are mitigating factors that now require many

organizations to adopt a Big Data solu tion, with some kind

of NoSQL platform as its foundation. Yet, the exact design

of that solu tion, and its countless considerations are

entirely dependent on the needs of the enterprise: server

virtualization, the impact of Cloud -based services, data

center u tilization and consolidation, more efficient

application performance, streamlined data governance

processes, hardware costs, and a host of other issues

u ltimately govern the decision to implement a NoSQL

solu tion and what that solu tion will mean to the

organization. Much of the financial industry still requires

strict ACID compliance for absolu te transaction integrity in

all banking operations, as do many military and other

governmental organizations; the same could be said of the

health care industry, especially regarding patient records.

An online travel service may be able to relax consistency

during the search process through various soft state

protocols and updating mechanisms so that higher

availability can be ensured . A social networking site that

starts small, but plans on exponential grow th, would want

to implement a system with availability and scalability in

mind from the beginning, and may decide to use some sort

of eventual or tunable consistency with various user “click
traffic” that doesn’t require strict consistency. The
multitude of options available in the marketplace makes

decid ing on a specific NoSQL solu tion challenging. Do you

need a graph database or document store? Key-value store

or columnar database? What sort of executive support is

there for the project? Is it an enterprise-wide

implementation, or only for a small program to begin with?

Will outside consultants be necessary? What about

application programmers? Should the solu tion be

developed in-house, or should an off-the-shelf solu tion be

purchased? These questions and innumerable others will

decide the fate of a particular solu tion. But in the end, the

need for such a solu tion d istills down to one essential

factor: the need to remain innovative and flexible in an

ever-changing business environment. ACID and BASE are

just clever acronyms for complex problems. Luckily for

modern organizations, there are myriad solu tions for those

problems. device like Raspberry Pi or BeagleBoard , but it

would be overkill for the task.

6 REFERENCES

[1]Grey, J. (June 1981). The Transaction Concept:
Virtues and Limitations. Tandem Computers Incorporated . Retrieved
from http:/ / research.microsoft.com/ en-

us/ um/ people/ gray/ papers/ theTransactionConcept.pdf

[2] Lindsay, B.G., Selinger P.G., Galtieri, C., Gray, J. N., Lorie, R. A.,
Price, T. G., Putzolu, F., Traiger, I. L.,
Wade, B. W. (July 1979) Notes on Distributed Databases. Cambridge

University Press. Retrieved from

http:/ / domino.research.ibm.com/ library/ cyberd ig.nsf/ papers/ A

776EC17FC2FCE73852579F100578964/ $File/ RJ2571.pdf

Reuter, A., Härder, T. (December 1983) Principles of Transaction-

Oriented Database Recovery.

Computing Surveys. Retrieved from

http:/ / cc.usst.edu.cn/ Download/ 5b953407-339b-46c3-9909-

66dfa9c3d52a.pdf.

Pritchett, D. (2008). BASE: An Acid Alternative. Retrieved from

http:/ / queue.acm.org/ detail.cfm?id=1394128.

[5] Terry, D. (October 2011) Replicated Data Consistency Explained

Through Baseball. Microsoft Research. Retrieved from

http:/ / research.microsoft.com/ apps/ pubs/ default.aspx?id=1574 11.

And, ©2013 DATAVERSITY Education, LLC. All rights reserved . 16

Strauch, C. (2012). NoSQL Databases. Stuttgart Media University.

Retrieved from http:/ / www.christof-strauch.de/ nosqldbs.pdf. And,

Burckhard t, S., Leijen, D., Fähndrich, M., Sagiv, M.(2012). Eventually

Consistent Transactions. Springer-Verlag. Retrieved from

http:/ / research.microsoft.com/ pubs/ 158085/ ecr-esop2012.pdf. And,

Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A., (January 2011). Data

Consistency Properties and the Trade-offs in Commercial Cloud

Storages: the Consumers’ Perspective.Retrieved from

http:/ / www.nicta.com.au/ pub?doc=4341

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017
ISSN 2229-5518

119

IJSER © 2017
http://www.ijser.org

IJSER

